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Abltract-When crystalline slip is considered as the micromechanism of plastic deformation in poly
crystals, and the slip process is assumed to be rate-independent, the formation of a vertex is predicted on
the current yield surface in stress-space, Experiments which were conducted to confirm the existence of
such a vertex are known to have produced ambiguous results; e,g, a superimposed shear during com
pressive loading was found to produce an initially .elastic response, If we consider that the crystalline slip
process is slightly rate-dependent, however, then we can furnish a reasonable explanation for this elastic
behavior in shear. We illustrate the point by considering first a single crystal model undergoing double slip,
and then a polycrystal model based on the slip concepts of Batdorf and Budiansky, The results presented.
based on the asSUmption that the slip process is not rate-independent, but rather at least sliahtly rate
dependent, live qualitative aareement, and reasonable quantitative agreement. to experimental results for
superposed shear during compressive loading. They also suggest that the actual rate sensitivity of plastic
ftow may be central to understanding the ambiguous conclusions from experimental attempts to find yield
surface venices,

I. INTRODUCTION
The principal micromechanism of plastic flow in metals at low temperatures is crystalline slip
via dislocation motion. Furthermore, it seems normally reasonable to adopt a Schmid-like
description such that the slip rate on a given crystalline slip system, or the average dislocation
velocity on that system, depends on the current existing stress state only through a dependence
on the resolved shear stress on that system. In the rate-independent idealization of plastic flow,
this Schmid description reduces to the local "yield criterion" that a given slip system within a
given element of crystal yields when a critical resolved shear stress is attained. Now, as HiII[l]
has remarked, theories of macroscopic rate-independent plasticity of polycrystals, based on the
concept of Schmid-like crystalline slip in each grain, lead inevitably to the prediction of a
pointed vertex on the current yield surface in (macroscopic) stress space. This contrasts with
the classical rate-independent plasticity formulations (such as 12 flow theory or, equivalently,
the Prandtl-Reuss equations and their generalizations) which postulate a smooth yield surface
at the current loading point. The reason for the generality of the predicted vertex structure,
when flow occurs by the slip micromechanism, is easy to understand. An explanation is given in
Appendix 1. Essentially, the macroscopic yield surface can be regarded as the inner envelope of
an unbounded number of planar yield surfaces, representing critical shear conditions for each
slip system at each (locally crystalline) element of material; see Fig. 1. At conditions well into
the plastic range, the collection of planes passing through the current stress state (Le.
corresponding to plastically active locations and slip systems) encompasses a wide range of
orientations, and hence a vertex develops as indicated.

Experiments, however, have not led to an unambiguous resolution of the question as to
whether vertices exist. Some workers have interpreted their results as being supportive of
vertex formation, others as being not so; see the reviews by Paul[2] and, more recently,
Hecker(3). The experiments divide into two types. In one, a vertex is sought directly on the
yield surface. In the other, one looks at how the direction of the plastic strain increment relates
to that of the stress increment for a zigzag loading path, for example, in a combined
torsion-compression test.

We show that a very small plastic strain-rate sensitivity, of a magnitude which could go
essentially unnoticed in direct tension or shear testing over a modest range of rates, is sufficient
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Fig. I. The macroscopic yield surface in stress space is the inner envelope of all (planar) yield surfaces
corresponding to critical shear stress conditions on individual crystalline slip systems at local points of a
polycrystalline array. All local surfaces corresponding to points and systems which are plastically active

must contain the current stress state. and hence a pointed vertex structure is developed.

to alter significantly some consequences of the vertex formation predicted by the rate
independent models. We note that it is now generally accepted that, as expressed in dislocation
dynamics studies of Johnston and Gilman [4, 5] and others, plastic deformation in metals is an
inherently rate-dependent process. Rice [6, 7] has established a rigorous mathematical frame
work, analogous to that of Hill [I] for the rate-independent case, for the incorporation of the
dislocation dynamics viewpoint of slip in constitutive modelling for general stress states and
loading paths. He shows further that if the Schmid-like assumption is made that the shearing
rate on a given slip system depends on the local stress state only through the shear stress
resolved onto that system, then at each instant in a history of deformation, the current
(macroscopic) plastic strain rate depends only on the current stress, and is derivable from a
scalar "flow potential" by differentiation with respect to the corresponding stress component.
As remarked by Rice [6], the macroscopic plastic strain rate is a continuous function of stress if
the local slip system shearing rates vary continuously with resolved shear stresses and,
consequently, a sudden change of a stress rate u will not alter the plastic strain rate i. P

abruptly. This suggests that rate-dependence, even if slight, cannot lead to a sharp vertex
structure.

A number of experiments in the form of torsion-compression tests on thin-walled tubes have
been carried out. Those by Budiansky et al. [8] have received particular attention in the
literature. Those investigators found that, during compressive loading, an imposed shear
produced an initially elastic response. The elastic response suggests that the current yield
surface, in the framework of rate-independent plasticity, may be smooth. The lack of an evident
vertex effect has been interpreted by some as a failure of the slip-based concepts. However, by
considering the material's plastic strain rate sensitivity, we offer an alternative explanation
which suggests that the slip-based concepts may themselves be sound and do. when im
plemented in a rate-dependent framework, lead to the conclusion that initial shear response,
superposed on tension or compression loading, is elastic.

2. A DOUBLE SLIP MODEL FOR SINGLE CRYSTALS
It is commonly observed that a double slip deformation pattern develops under simple

tension loading of a single crystal. To illustrate simply vertex formation on the yield surface
within a rate-independent approach, and to demonstrate later the effects of rate sensitivity, we
consider a single crystal which has been deforming in a (symmetrical) double slip pattern under
simple tension stress 0'11 and imagine that a small shearing stress 0'\2 is superposed. Asaro(9)
used this double slip model to study the stability of rate-independent plastic flow in crystals. He
comments on the "geometrical softening" [10. 11) that can arise in single crystals, e.g. from
rotation of the lattice due to grip constraint in tensile loading. The schematic picture of
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the double slip system is shown in Fig. 2(a). This figure shows the idealized two-dimensional
double-slip model which has the slip vectors s, and S2' and the slip plane normals, Dl and D2, on
the plane of the drawing. However, when the real crystal undergoes double slip with the tensile
axis along the XI direction, both the slip vectors Sl and S2 are in the plane of the drawing, but the
slip plane normals, D, and D2, are tilted outward.

We consider the two-dimensional model and idealize the problem such that rotations of
lattice directions are neglected. A more precise analysis that includes the rotations is given in
Appendix 2. It leads to conclusions which are similar to those following, and reduces to the
following when the crystal hardening modulus exceeds greatly the stress level. Thus the
resolved shear stresses 1'( and 1'2 on the two systems and their rates are given by

1'; =OJ • 0' . Sj, i =I, 2

T; =nj . U . Si, i =1,2

where 0' is the true or Cauchy stress, and U is its time rate.
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Fig. 2(a). The idealized two-dimensional model of a single crystal undergoin. a double slip pattern.
(b). The crystal response in stress space at the inception of shear is shown. The lines marked TZ" const. and

TI = const. define the yield surface.
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In terms of the angle 2</J between the slip planes as depicted in Fig. 2(a), eqn (2) can be
expressed as:

. I. . 2"'" 2""T2::::: 2all sm 'I' +an COS <p.

(2a)

(2b)

Since the deformation is assumed to be homogeneous, the plastic strain rate t P is related to
crystalline slip rates Yi by

(3)

in component form this becomes

. p ,p
C22::::: C II'

(3a)

(3b)

(3c)

The rate-independent constitutive law governing multi-slip processes in single crystals is
given by (e.g. Hill [12])

(4)

where the hij are hardening moduli; hll and h22 are self-hardening moduli, and hl2 and h21 are
cros~·hardening (or latent hardening) moduli. Equality holds when the jth slip system is active
and inequality otherwise. Consistently with the presumed symmetrical double slip, we assume

At the instant of tensile loading all that is being considered, before shear application, both
systems have identical strengths and hence the yield surface has the vertex structure (formed
by surfaces TI =constant and T2 =constant) illustrated in Fig. 2(b). We assumed that cb < 45°,

We now investigate loading regimes in the all, an plane corresponding to continued double
slip and to single slip, respectively, presuming that the considered stress increments &11, &12 form
a vector pointing outward from the yield surface (otherwise, they cause only elastic response).
Suppose, for example, that after the inception of shear loading a12, slip system 2 is active and
slip system 1 is inactive; of course, both slip systems were activated by the tensile stressing all

before al2 was applied. From 1\ s:; h l 2'Y2::::: hI2T2/h22 = h'T2/h, which follows from (4), there
results the inequality

(5)

when eqns (13) and (2b) are used.
Similarly, for the case that slip system 1 is active and slip system 2 is inactive, one must
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. < I 2.J. h - h' .
0'12- -2 tan .." h+h,O'II
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(6)

On the other hand, the condition for both I and 2 to be active, obtained by writing (4) as an
equality, solving for 1'" 1'2, and requiring that 1'1> 0, 1'2> 0 is that simulatneously (hTI
h'T2)/(h2 - h'2)~ 0, (hT2 - h'11)/(h2 - h,2) ~ O. From eqns (2a) and (2b) these are equivalent to the
continued inequality

(7a)

which can be met only if <7 11 ~ 0 and

(7b)

The domains of the 0'11, 0'12 plane delineated by inequalities (5), (7b) and (6) are distinct
bordering regions, if h> h'. But the regions overlap when h < h'. This overlap means that when
h < h', a specification of the stress rates <711 , <712 does not determine uniquely whether single or
double slips result; the character of the slip is, however, determined uniquely by specification
of <7110 <7 12 when h > h' since there is then no overlap.

The nature of the response at the inception of shear loading is illustrated in Fig. 2(b). The
two lines marked 12 = const., 1) = const. define the yield locus and the domain of elastic
response is indicated; it is the region for which both T. < 0 and T2 < O. Region II is the domain of
the stress plane compatible with double slip when h> h'; its boundary as indicated is based on
eqn (7b). Regions 11 and 12 correspond to single slip on systems 1and 2, respectively, in the case
h > h'; the regions corresponding to single slip when h < h' are denoted by I I' and 12',
respectively, and exhibit the overlap noted above. For the case h' =0 (the slip systems harden
independently), the double slip region II becomes the region where the resolved shear stress
rates of both slip systems are positive, i.e. the region between the dashed lines. As the h' value
grows from zero, region II shrinks and regions It and 12 of single slip expand. When h' =h,
region II degenerates to a line and then only a pure tensile load can activate both systems. As
h I grows larger than h, a region II of different character expands from the line and, according to
eqns (5) and (6), the regions of single slip, now denoted by It' and 12', overlap region II. Hence,
the crystal responds nonuniquely in this new region II. For example, if we arbitrarily assume
that for a stress rate in this region II both slip systems are activated, then the plastic shear
strain rate ef2 is found to be of opposite sign to the applied shear stress rate <7 12, since it is easy
to show (Asaro [9])

when both systems are active. On the other hand, one may verify that an alternate single slip
solution exists such that if <711 , <712 is directed into region II and <712 > 0(<0), then only system
2(1) is active, 11 = 0('5'2 = 0), and if2 > 0( < 0). This non-uniqueness of response to a given
stress-rate direction is not resolvable within the rate-independent model although we show later
that the rate-dependent model, phrased in a manner consistent with h' > h, tends to select the
single-sUp mode. As the full analysis of Appendix 2 shows, when 0'11 is not negligible compared
to h, the switch from unique to non-unique response in region II occurs when h' > hlK, in
terms of the rotational factor K introduced "there, and this may be rewritten as the condition

h' > h+20'11 sin2I/> cos 21/>.

When cP = 45°, the shear stress 0'12 makes no contribution to the resolved shear stress on
both systems. This is the trivial case. Since in this case the lines 1. =const. and 12 =const. are
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colinear and all the vertex structures shown in Fig. 2(b) will degenerate to a vertical line, the
yield surface is smooth.

When cP > 45°, the relative positions of the lines labelled T2 = const. and TI = const. in Fig.
2(b) change. The inequality for the case that slip system 2 is active and that slip system I is
inactive is

(5a)

and the inequality for the case that slip system 1 is active and that slip system 2 is inactive is

(6a)

If we plot the crystal's response in stress space, we will have the reflection of Fig. 2(b) through
the <TIl axis. The qualitative results are the same as those for cP < 45°.

Now, within the rate-dependent Schmid-like framework, we assume that for a given slipped
state, the rate of plastic shearing 'Yi on slip system i (of group i = 1. 2, ... , n) depends on the
current stress state only through the shear stress T; resolved onto system i. Symbolically,

'Yi = 1';(7'j, current state), i = 1,2, ... , n. (8)

Prior plastic shearing of all slip systems intersecting a given point may aff.ect the current
response of a particular slip system at that point. As a specific basis for calcualation, not
necessarily having a direct microphysical foundation, we consider the power-law non-linear
viscous form

( )

I/m

1'; = ai g;(curre7'~t state) . (9)

Here the constants a; may be regarded as reference shearing rates, such that if the crystal is to
be deformed with each 'Yi set equal to ai, then 7'; = gi describes the requisite shear stress
resolved on the ith slip system. The functions g;, by analogy with eqn (4), are then supposed to
be giyen by

n

8i = L hij'Yj, i = I, 2, ... , n.
j=1

The exponent 11m is consistent with a plastic strain rate sensitivity parameter defined as

aIn 1

m = aIn Y'

In our analysis, m is taken as a small positive constant, which is the same for all slip systems.
For the double slip model i = 1,2 and we write

(11 )

(12)

For small shears "YI and "Y2 beyond a state to which the crystal was loaded by uniaxial tension
up to the stress <T?h with both slip systems responding at the fixed rate al = a2 = a, we can write

(13)

(14)
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(these are valid for arbitrary 'YI and 'Y2 if h and h' are constant). The integration constant
(l/2)0'~1 sin 2cf> is the resolved shear stress on both slip systems at the initial state considered,
which we take to be that just before the inception of loading by 0'12. A superscript "0" denotes
the quantity at the instant just before the inception of 0'12 loading.

If the stress rates 0'11,0'12 remain constant after the inception of shear, eqn (9) becomes

. = Ii ((I/2)0'~1 sin 2cf> + «1/2)0'11 sin 2cf> - 0'12 cos 2cf>)t)(lI
m

l
'YI (I/2)0'?\ sin 2cf> + h'Y! + h''Y2

. = Ii ((I/2)0'~1 sin 2cf> + «(1/2)0'11 sin 2cf> + 0'12 cos 2cf>)t)O/ml

'Y2 (1/2)0'?1 sin 2cf> + h''Yl + h'Y2

where t is time since inception of shear loading.
We rearrange eqns (15) and (16) to a dimensinless form as

df l = (1 + B(1- 2(dO'IJdO'II) cot 2cf>)8)O/m l

d8 1+f\ +(h'/h)f2

df2 = (1 + B(1 + 2(dO'ddO'II) cot 2cf> )8)O/mJ
dB l+f2 +(h'/h)fl

where

(15)

(16)

(17)

(18)

Equations (17) and (18) show that results depend only on dun/dull' h'/h, and B for a given
slip angle 2cf>. For the numerical solutions, we arbitrarily choose 2cf> = 700 to be representative
of the slip angle of a face centered cubic crystal[9] (we note that the slip angle 2cf> may be
nearer to 120° for a body centered cubic crystal [9]). We also keep the tensile stress rate
constant along the deformation history (i.e. 0'11 = u~, = constant, so that B = 1+ h'/h).

Equations (17) and (18) have been integrated numerically. The results are plotted in Figs
3(a-c) and 4. In Fig. 3(a), the case of dO'ddulI = 1.0 and h'/h =0 is investigated. The loading
direction duddO'l1 is chosen so that both the slip systems are activated according to eqn (4).
The normalized plastic shearing rates 'Ida are plotted as a function of the normalized shear
stress O'dO'~, in Fig. 3(a). The curves marked m = 0 in all figures represent the rate-independent
solution. In Fig. 3(a), we can see that, as m gets smaller, the rate-dependent '11.2 approaches the
rate-independent 'YJ.2 faster with increasing load.

Figure 3(b) shows the numerical results for duddull = 2.0 and h'/h = O. The stress ratio
duddO'l1 is chosen so that only slip system 2 is activated according to the rate-independent
analysis. Figure 3(b) shows that the rate-dependent 'II approaches zero and the rate-dependent
'12 approaches the corresponding rate-independent '12 as load increases.

In Fig. 3(c), the numerical results are plotted for dO'12/dO'II = 0.05 and h'/h = 1.1. This is the
case that should result in the non-unique response of the crystal from eqn (4) since h' > h. This
non-uniqueness is not exhibited for the rate-dependent analysis. In Fig. 3(c), 1'da is plotted as
a function of O'dO'~I' The limit, as m approaches zero, of the 1'1.2'S predicted from the
rate-dependent analysis indicates that the crystal chooses the single slip response. Note that the
two straight lines marked m = 0 are plotted according to 1'2 = T2/h and 1'1 = O.

In Fig. 4, the normalized shear stress udO'~, is plotted as a function of the quantity Ef2h/u?,
for dO'ddO'II = 1.0 and h'/h = O. Because of the viscous nature of the rate-dependent con
stitutive law, 1'1.2 undergoes a smooth change after the inception of shear, as shown in Fig. 3(a),
in contrast to the abrupt change of 1'1.2 predicted by the rate-independent analysis. This
continuous change in 1'1.2 results in the elastic behavior (in shear) which is shown in Fig. 4. We
can see that, as m gets smaller, the rate-dependent results approach the much softer response
(in shear) of the rate-independent analysis.

When h' is taken as zero, eqns (17) and (18) can be integrated exactly. If we further assume
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Fig. 3(a). The normalized plasltc shearing rate ydli is plotted as a function of the normalized shear stress
udu';, for duddull = 1.0 and 11'111 = O. This stress ratio activates both slip systems according to eqn (41.
Ib) The normalized plastic shearing rate 'rdli is plotted as a function of the normalized shear stress
udu':, for duddull =2.0 and '1'111 =O. This stress ratio activates only slip system 2 according to eqn 14}.
(c) The normalized plastic shearing rate 'Y1.2/a is plotted as a function of the normalized shear stress ulllu~,
for duddull = 0.05 and /1'/11 = 1.1. According to eqn (4). the crystal responds non-uniquely. However. the
rate-dependent analysis clearly indicates that the crystal chooses the single-slip response at the limit m = 0

that Un equals U~h and restrict the stress ratio dUt2/dull so that both slip systems would be
activated in the m =0 limit, we may then expand the exact solutions around (J =O. The initial
crystal response in shear can therefore be obtained as

(19)
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Fig. 4. The normalized shear stress crdcr':t is plotted as a function of the normalized plastic shear strain
&ltIcr\\ for dcrddUtl = 1.0 and /1'//1 = O. The rate·dependent analysis shows the elastic response in shear at

the inception of shear.

Equation (19) gives the initial curvature in the plot of Un versus E~ after the inception of shear.
The curvature is larger for smaller m, but the quantity dEf2/dul2 at UI2 =0 is always zero which
indicates that initial shear response is elastic.

Figures 3(a) and 4 show the results for duddull =1.0 and h'/h == O. This is a case for which
both slip systems are activated in the rate independent limit. Figure 3(a) shows that the
rate-dependent 11.2 approaches the rate-independent 11.2 faster for smaller m as deformation
proceeds. There exists a steady state - 1i become a constant after some time. This steady-state
11.2 is denoted as 1i~2 which is easily obtained from eqns (15) and (16) as

'S>

1L == p(I/!+m) for Pi> O(i =1,2)a I
(20)

=0 for Pi <0

where Pi =fi/fiO. This steady state rate is essentially independent of m for m~ 1. Also, there are
steady states seen in Fig. 3(c) for h'/h;tO. In Fig. 4, the elastic behavior in shear and the
parabolic features of the curve before reaching the steady state are observed for the rate
dependent results. We can see the qualitative characteristics, that the curvature becomes small
as m gets large, described in eqn (19) for the rate-dependent analysis at the inception of shear.

3. SLIP THEORY AND VEr.TEX YIELD EFFECTS IN POLYCRYST ALS
Batdorf and Budiansky[13] have proposed the so-called "slip theory", dte simplest physical

plasticity theory for polycrystals which considers crystalline slip as the principal mechanism
for plastic deformation. This version of a slip-based theory does not consider the requirements
of compatibility between adjacent grains, or, stated alternatively, it neglects the residual
stresses which develop due to the diiferect slip states of each of the plastically deformed grains.
(To meet the compatibility and equilibrium conditions on the microscale, Lin and Ito[l4, 15]
used the point force solution for an infinite elastic solid in their treatment of plastic strain
gradient as an equivalent body force. whereas Kroner[l6), Budisnsky and Wu[l7] and Hill[IS)
developed the self-consistent modelS which take account of grain interactions by employing
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Eshelby's solution for an ellipsoidal inclusion undergoing shape transformation in an infinite
elastic solid{l9].)

The simple Batdorf-Budiansky slip theory [13], which we adopt here for analysis of the
rate-dependent case, assumes that each individual grain carries the same stress as the macros
copic stress u. Thus, the resolved shear stress T on a slip system having slip plane normal 0 and
slip vector s is

T = o· u's.

Since it lies within the framework of the classical "small strain" approach, slip theory ignores
rotation of the slip systems and shear stress rates +are given by 0 . 0- . s. Each slip system in a
polycrystal is assumed to harden independently and plastic shearing of a given system is stress
state dependent only through the resolved shear stress on that system. Symbolically, for the
rate-independent model,

y=F(f) (21)

where y represents the plastic shear strain of the slip system, f is the maximum value of the
resolved shear stress in the loading history, and F( 7') is a monotonically increasing functin
which may be set equal to zero for 7' less than a stress 7'L, at which yielding is assumed to begin.

The macroscopic plastic deformation of the polycrystal is then obtained by summing F( f)
over all the possible slip systems in orientation space. We have

E P = LLYOj3 ~ (os + sn) dD d,B (22)

where E
P

is the macroscopic plastic strain tensor, YOj3 represents the plastic shear strain of a
differential element referred to the direction nand s in orientation space,dD is the differential
solid angle about the normal n, and d{3 is the differential angle about the slip vector s. The
integration is performed over a hemisphere H swept out by n, and a semicircle S swept out
by s.

The function F(T) employed in the rate-independent model can be obtained from the
stress-strain curve of a Mmple tension test. The approximate method of [13] is to expand F(7')

as a Taylor series in 7' - 7'b integrate over the orientation space for the tensile plastic strain, and
determine the desired number of coefficients in the series by fitting a corresponding number of
points in the stress-strain curve.

Budiansky et al. conducted an experiment in which thin-walled cylinders of 14S-T4
aluminum alloy were used [8]. Those cylinders were stressed into the plastic range in axial
compression and then twisted. As the twist was applied, the compression was varied in such a
manner that the ratio of the increments of shear stress to the increments of compressive stress
was approximately constant for a given cylinder. Figure 5 shows a portion of the compressive
stress vs plastic strain relation for the material. Some of the results of the superposed shearing
are shown in Figs. 6-8, In these figures, 0'1 t denotes the compressive stress, 0'0 denotes the yield
stress, Efl denotes the plastic compressive strain, 0'12 denotes the shear stress, Y~( =2Ef2) is the
engineering plastic shear strain, and AEfl denotes the increase of the plastic compressive strain
after the inception of shear. Comparison with the predictions of the rate-indep~dent models of
12 flow theory, 12 deformation theory and slip theory were made by Budiansky et ai. For the
positive dO'ddO'l1 (Figs. 6 and 7), 12 flow theory correctly predicts the initial elastic response in
shear, but it underestimates the plastic shear strain; slip theory predicts aplastic shear strain
very close to that predicted by J2 deformation theory, but both theories overestimate the plastic
shear strain; the predictions of all three theories are in good agreement with the experiments for
the compressive plastic strain Eft. For the negative dO'ddO'll (Fig. 8), plastic deformation
occurs well before the elastic-plastic boundary, Toet = constant (Toct == (2/3)(uII + 30'I01/~, of the
simple flow theory is reached. Slip theory gives excellent agreement with the experimental
shear strain, but underestimates the compressive plastic strain by a small amount of "creep" [8].
All rate-independent plasticity theories that are based on crystalline slip as the mechanism for
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Fig. 5. The experimental results of the compression test by Budiansky et al. (8J is shown. The numerical
results which are calculated from the assumed g(y) for the rate sensitivity m= 0.03 are also shown.

plastic deformation lead to the prediction of the vertex formation on the current yield surface.
Furthermore, for the compression-shear loading path, these physical plasticity theories predict
less stiffness in shear under continuous loading; the stiffness in shear approaches the elastic
shear modulus as the loading direction moves from the axial compressive load to the dire~tion

in which no slip systems of the polycrystalline aggregate are activated. However, the experi
mental results showed the elastic stiffness at the onset of shear for all values of dO'12/dO'Il' This
elastic behavior in shear plainly contradicts the predictions of all slip-based plasticity theories.
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Figs. ~8. The experimental results of the combined compression and torsion test by Budiansky et al. [8J
are shown. The stress ratios dlTll/dlTl: are 1.91. 1.18. and - 1.13 for Figs. 6. 7 and 8. respectively. The
predictions by various theories are compared. The rate sensitivity m of the rate-dependent slip theory is
0.Q3 for all cases. The elastic response (in shear) predicted by the rate-dependent slip theory is noted. Also.

the "creep" compression strain irpredicted by the rate-dependent slip theory.

Now, if we assume that the slip processes are rate-dependent and that the slip rates vary
continuously with the resolved shear stresses, we can predict the elastic response in she~r for
the above-mentioned compression-torsion tests by the argument of Rice[6]. Within the context
of slip theory, the non-linear viscous form is again used to describe the slip process of a slip
system, viz,

( )

'fm

y = Ii g(T'Y) (23)

where y is the plastic shearing rate, Ii is the reference plastic shearing rate, m represents the
plastic strain rate sensitivity, and g("I) is the function of the current state which is taken as the
plastic shear strain "I of the slip system because of the assumption of independent hardening
(Note that T=g("I) when l' = Ii.) The plastic shear strain "I of each slip system is thus obtained
by integrating eqn (23) incrementally. The macroscopic plastic strain is then obtained by
integrating the plastic shear strain of all the slip systems in the orientation space as in eqn (22).

For a given rate sensitivity m, the function g( "I) is found by fitting the numerical results of
the pure compression curve, Fig. 5, to the experimental data. Several assumptions are made in
the numerical calculations. Here, the compressive stress rate <Til is assumed to be a constant to
simplify calculation of the material response in pure compression, whereas the compressive
strain rate was kept constant in the experiments. A monotonically increasing function g( "I) with
g(O) = TL is guessed; the load is applied, and when the value of the shear stress l' resolved on
the slip system at an integration point is first detected to be larger than TL' which is equal to half
the value of the yield stress in the pure compression test, the plastic shear strain "I of this slip
system is assumed to equal g-'(T) (the inverse function of g('Y» which is a very small value
near zero. The reference shearing rate a of this slip system is then assumed to be g-I'(T)T
(whereg-I'(T) means the derivative of g-'(T) with respect to 1') such that the constitutive law,
eqn (23), can be satisfied at this moment. The plastic shear strain "I of the slip system is then
integrated incrementally according to eqn (23) as deformation proceeds. For those integration
points at which the resolved shear stress l' is never larger than TL, the plastic shear strain "I is
simply taken as zero. The above assumptions are j,ustified by the fact that plastic deformation is
very small below the "yield stress" (from the viewpoint of rate-independent plasticity) in an
ordinary compression test. Therefore, we assume that the amount of slip can be neglected until
l' reaches Tv For a fixed value of m, a g('Y) can be found such that the compression plastic
response matches the experimental compression test. In Fig. 5, the experimental plastic
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compressive strain is plotted as a solid line, and the welJ~matched numerical results which are
c1aculated by the guess g(y) are also plotted for m = 0.03.

The numerical results of the combined compression~torsion test based on the guess g(y)
were obtained for m =0.005, 0.01, 0.03 and 0.05. In those calculations, we assumed that
UII = U~t = constant for a positive value of dUll/du12' and UII = - U~l = constant for the
negative value of dUII/dul2. The numerical results for m = 0.03 are shown with the cross
symbols in Figs. 6-8.

In these figures, the rate~dependent results do show the elastic response in shear at the
inception of shear. However, as the shear stress becomes large, the present numerical results
overestimate the plastic shear strain for the positive values of dUI"dul2' and they under
estimate this strain for the negative value of dUII/duI2' The compressive plastic strain of the
numerical results matches the experimental results well for the positive values of dO'l "dul2;
but, for the negative value of dUlI/dul2, the numerical results overestimate the compressive
plastic strain by some amount of creep. However, the qualitative trend is consistent with the
experimental data.

Although the numerical results for m other than 0.03 are not shown here, these results are
summarized in the following. The rate~ependent numerical results approach to those of the slip
theory of Batdorf and Budiansky when m becomes small. The compressive plastic strain of the
numerical results for all values of m matches t~e experimental data well for the positive dUII/duI2'
This might be due to the fact that the input parameters to the rate~dependent slip model are
obtained so that the stress-strain relation in pure compression of the rate~dependent slip model
matches that of the experimental results. The compressive plastic strain of the numerical results
for m = 0.01 matches the experimental data very closely for the negative dUll/duI2' As m. gets
larger, the predicted amount of creep in compression becomes larger. However, the qualitative
trend is still consistent with the experimental data as shown in Fig. 8 for m = 0.03.

The initially elastic response in shear is shown for all values of m. For m as small as 0.005,
the shear response of the numerical results is very close to that of the slip theory of Batdorf
and Budiansky. This is due to the fact that the rate-dependent numerical results approach to
those of the rate-independent slip theory when m becomes small. Consequently, the curvature
at yf2 = 0 becomes large as m gets small. This is consistent with the prediction of two
dimensional double slip model of a single crystal as expressed in eqn (19) and as shown in Fig.
4. For the negative dUlI/dul2 the plastic shear strain of the numerical results for all values of m
matches the experimental data except for some underestimation of yf2 in the range where 0'12 is
larger than 16 ksi.

Apparently the value m =0.03, chosen here as providing a reasonable fit to the data for
14S-T4 aluminum alloy, is rather high. The rate sensitivity m of aluminum alloys is typically in
the range of - 0.005-0.005 as reported in [21]. Nevertheless, our numerical results for m = 0.03
shown in Figs. 6-8 demonstrate the qualitative features due to rate sensitivity of plastic flow for
a polycrystalline material under a nonproportional loading condition. Perhaps a more elegant
finite deformation model, which should take account of residual stress, rotation of the slip
systems, and latent hardening of the slip systems, is needed to explore thoroughly the plastic
behavior of the polycrystal under more complex loading conditions.

4. DJSCUSSION
When crystalline slip is considered as the principal mechanism for plastic deformation,

formation of a vertex on the current yield surface is predicted by a rate-independent analysis.
We have shown that small material rate sensitivity, essentially ignorable in proportional loading
experiments, can furnish a reasonable explanation of some experimental results, such as those
of the combined compression-torsion tests, which have not demonstrated such a vertex structure.

In the analysis of a single crystal deforming in a double slip pattern, assuming a
rate-dependent slip process and allowing the material rate sensitivity to approach zero was
shown to help to select a deformation mode, whereas this mode could not be determined
uniquely through the rate-independent approach.

In the polycrystal model based on the slip concepts of Batdorf and Budiansky, the function
g( y) and the rate sensitivity m in the viscous slip law (eqn 23) is obtained from a trial-and-error
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method by fitting the compressive plastic response of a compression test. The choices of g(1')
and especially m are rather arbitrary; however, the effort we make here is to show that the
plastic strain rate changes smoothly for the rate-dependent approach even though the stress
rate has a jump, and that the elastic behavior in shear of the combined compression-torsion
tests can be predicted with this simple rate-dependent model based on the slip theory of
Batdorf and Budiansky.

Our study supports the idea of vertex formation on the current yield surface, in the sense
that this does result in the rate-insensitive limit of a rate-dependent analysis. While deformation
theory, some phenomenological corner theories, and the physical plasticity theories, which are
all suggestive of the existence of a vertex (or corner) formed on the current yield surface, are
extensively used in bifurcation or buckling analyses in the rate-independent sense, the retar
dation of instabilities due to material rate sensitivity should also be noted.
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APPENDIX I
The reason for the predicted yield surface vertex structure. when rate-independent crystalline slip is assumed as a

micromechanism. is most readily seen when the problem is addressed within classical "small strain" concepts such that
alternations of the local geometry of the polycrystalline array are ignored, local elastic response is linear, and local elastic
moduli within each cryst31line element are assumed to be unaffected by slip. Then (e.g. Hillll), Rice{6]) the local resolved
shear stress T on any particular slip system. at any point of some crystalline element (grain) of the array has the form

where cri is the macroscopic stress state. Here ni; and c are independent of cri" ni; depends only on the local point and
system c'onsidered but not on the distribution of plastic shear within the array, whereas c depends additionally on the
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distribution of shears (and represents the "residual" shear s~ress that wouldrcflIain if Uij were reduced to zero under
conditions for which the grains were constrained against further plastic shearing). According to the Schmid criterion. yield
occurs at the point and on the system considered when T attains a critical value T, which may, in general, be a functional of
the prior plastic shears experienced. Hence the local yield criterion T = T•• or

maps as a plane in stress space with orientation lIij: as plastic distrotion of the polycrystalline array takes place, this plane
may translate since Tc and c depend on the ongoing plastic shears, but it does not change orientation (/lij is constant).
Evidently, the macroscopic yield criterion is the inner envelope of local planar yield surfaces for all possible slip systems
and all points of the polycrystalline array. Further, during a general program of plastic distortion of the polycrystal. the
(translating) planar yield surfaces for each plastically active slip system and point of the array must pass through the
current stess point (Fig. I). At conditions well into the plastic range, this collection of planes encompasses a wide range of
orientations IIi" and hence a pronounced yield surface vertex is developed. Specific calculations of subsequent yield
surfaces for polycrystals. necessarily exhibiting the vertex structure. are given by Lin and Ito[14. 15) and Hutchinson[~O].

APPENDIX 2
When a rigid plastic single crystal deforms in a single slip pattern. the angle between the slip direction and the tensile

axis, 1/1, decreases due to the constraints of the specimen grips. As in Asaro[9], we have the relationship

(AI)

At the inception of shear under double slip conditions, the resolved shear stress rates of both slip systems are

(A~)

(A3)

where 4> 1 denotes the angle between the slip vector s1 and the tensile axis xI. and 4>~ denotes the angle between the slip
vector S2 and the tensile axis XI. At the inception of shear. 1/11 is equal to 1/12 and is denoted as 1/1.

When tI> < 45", we consider the case that slip system I is active and slip system 2 is not active. Thus.

(A4)

From eqns (A2HA41. and (4). we obtain the inequality,

(:\5)

where

K = 1- (ull/h') sin~ 4> cos 24>
I +(u,J!h) sin' tI> cos 24>

Similarly. we have another inequality for the case that slip system 2 is active and slip system I is inactive, viz.

(:\6)

Equation (AS) and (A6) are similar to eqns (5) and (6) except that a factor K appears along with h'. Since hand h' are
larger than or comparable to 1711, the value of K is less than unity. When hand h' are much larger than 1711, the value of K
approximately equals I: thus, the rotation "Of the slip systems can be neglected. When hand h' are comparable to 171,. the
value of K is no longer near to I, and the rotation of the slip systems should be considered. Without"consideration of the
rotation of the slip systems, the conditions that a nonunique region in stress space exists is h' > h, With consideration of
the rotation of the slip systems, the condition mentioned above becomes h'K > h. Since K can be significantly less than 1
when stress 171' is of the same order as h (and cos 24> > 0), the crystal seems to be much more stable with respect to loss of
uniqueness under those conditions.

When 4> > 45°, the inequality for the case that slip system I is active and that slip system 2 is inactive is

(:\7)

and the inequality for the case that slip system 2 is active and that slip system I is inactive is

(AS)

When hand h' are much larger than 17'10 the value of K approximately equals I; the rotation of the slip system can be
neglected. When hand h' are comparable to 17110 K can be larger than I (cos 21/1 < 0); the crystal is more unstable as far as
loss of uniqueness (when h'K > h) is concerned.


